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ABSTRACT Recent advances in multidimensional NMR
methodology have permitted solution structures of proteins in
excess of 250 residues to be solved. In this paper, we discuss
several methods of structure refinement that promise to
increase the accuracy of macromolecular structures deter-
mined by NMR. These methods include the use of a confor-
mational database potential and direct refinement against
three-bond coupling constants, secondary 13C shifts, 1H
shifts, T1yT2 ratios, and residual dipolar couplings. The latter
two measurements provide long range restraints that are not
accessible by other solution NMR parameters.

The two major techniques for determining the three-
dimensional structures of macromolecules at atomic resolution
are x-ray crystallography in the solid state (single crystals) and
NMR spectroscopy in solution. Unlike crystallography, NMR
measurements are not hampered by the ability or inability of
a protein to crystallize. The size of macromolecular structures
that can be solved by NMR has been increased dramatically
over the last few years (1). The development of a wide range
of two-dimensional (2D) NMR experiments in the early 1980s
culminated in the determination of the structures of a number
of small proteins (2, 3). Under exceptional circumstances, 2D
NMR techniques can be applied successfully to determine
structures of proteins up to '100 residues (4, 5). Beyond '100
residues, however, 2D NMR methods fail, principally because
of spectral complexity that cannot be resolved in two dimen-
sions. In the late 1980s and early 1990s, a series of major
advances took place in which the spectral resolution was
increased by extending the dimensionality to three and four
dimensions (1). In addition, by combining such multidimen-
sional experiments with heteronuclear NMR, problems asso-
ciated with large linewidths can be circumvented by making
use of heteronuclear couplings that are large relative to the
linewidths. The first successful application of these methods to
a protein greater than '12 kDa was achieved in 1991 with the
determination of the solution structure of interleukin 1b, a
protein of 18 kDa and 153 residues (6). Concomitant with
spectroscopic advances, significant improvements have taken
place in the accuracy with which macromolecular structures
can be determined. Thus, it is now potentially feasible to
determine the structures of proteins in the 15- to 35-kDa range
at a resolution comparable to '2.5-Å resolution crystal struc-
tures (7). The upper limit of applicability is probably 60–70
kDa, and the largest single-chain proteins solved to date are
'30 kDa, comprising '260 residues (8, 9). In this paper, we
discuss a number of new refinement strategies aimed at both

facilitating NMR structure determination and increasing the
accuracy of the resulting structures. These include direct
refinement against three-bond coupling constants (10) and 13C
and 1H shifts (11–13), as well as the use of conformational
database potentials (14, 15). More recently, methods have
been developed to obtain structural restraints that characterize
long range order a priori (16–18). These methods include
making use of the dependence of heteronuclear relaxation on
the rotational diffusion anisotropy of nonspherical molecules
and of residual dipolar contributions to one-bond hetero-
nuclear couplings arising from small degrees of alignment of
molecules in a magnetic field.

General Principles of NMR Structure Determination. Irre-
spective of the algorithm used, any structure determination by
NMR seeks to find the global minimum region of a target
function Etot given by: Etot 5 Ecov 1 Evdw 1 ENMR, where
‘‘Ecov,’’ ‘‘Evdw,’’ and ‘‘ENMR’’ are terms representing the cova-
lent geometry (bonds, angles, planarity, and chirality), the
nonbonded contacts, and the experimental NMR restraints,
respectively (19). Algorithms currently used include simulated
annealing in both Cartesian (20, 21) and torsion angle space
(22), metric matrix distance geometry (23), and minimization
with a variable target function in torsion angle space (24).

The main source of geometric information contained in the
experimental NMR restraints is provided by the nuclear
Overhauser effect (NOE). The NOE (at short mixing times) is
proportional to the inverse sixth power of the distance between
the protons, so its intensity falls off very rapidly with increasing
distance between proton pairs. Consequently, NOEs usually
are observed only for proton pairs separated by #5–6 Å.
Despite the short range nature of the observed interactions,
the short approximate interproton distance restraints derived
from NOE measurements can be highly conformationally
restrictive, particularly when they involve residues that are far
apart in the sequence but close together in space (1, 19).

Systematic bias arising from the different algorithms used to
calculate the structures may be introduced via the first two
terms, Ecov and Evdw, in Eq. 1. The values of bond lengths, bond
angles, planes, and chirality are known to very high accuracy,
so it is clear that the deviations from idealized geometry, as
represented by the term Ecov, should be kept very small. The
second term, Evdw, representing the nonbonded contacts, is
associated with considerably more uncertainty than the cova-
lent geometry (25, 26). Given the numerous ways to represent
Evdw (for example, a simple van der Waals repulsion term or
a complete empirical energy function including a van der
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Waals Lennard–Jones 6–12 potential, an electrostatic poten-
tial, and a hydrogen bonding potential), it is evident that
variability is introduced via Evdw. It is therefore essential to
ensure that the calculated structures display good nonbonded
contacts.

The uncertainties associated with the covalent geometry and
van der Waals terms can introduce errors of '0.3 Å in the
coordinates (26). The major determinant of accuracy, how-
ever, resides in the number and quality of the experimental
NMR restraints that enter into the third term, ENMR, in Eq. 1.

Although a high resolution, carefully refined x-ray structure
of a given protein may not be identical to the ‘‘true’’ solution
structure, it is likely to be reasonably close in many instances,
as evidenced, for example, by the excellent agreement (# 1 Hz
rms deviation) between the experimentally determined values
of the 3JHNa coupling constants in solution and their corre-
sponding calculated values from crystal structures (10, 27, 28).
Moreover, it is generally the case that three-bond coupling
constants, 13C secondary shifts, and 1H shifts calculated from
high resolution crystal structures agree better with the exper-
imentally measured values than those calculated from the
corresponding NMR structures (refined in the absence of
coupling constant and chemical shift restraints) (10–13, 25). It
is therefore instructive to examine the dependence of the
backbone rms difference between NMR and x-ray structures
on the precision of the NMR structures (25). This dependence
is shown in Fig. 1 for 14 proteins, for which both NMR and
x-ray structures are available and which are representative of
some of the different programs used in NMR protein structure

determination (25). A linear relationship is evident. In addi-
tion, in cases in which both low and high precision NMR
structures are available for the same protein, the high precision
structure is significantly closer to the x-ray structure than the
low precision one. The data can be fit to a straight line with a
correlation coefficient of 0.9 and a limiting rms difference
between NMR and x-ray structures of '0.45 Å. Moreover, all
of the monomeric NMR structures with a precision of better
than 0.5 Å are 0.85 Å or less away from the corresponding
crystal structures. Given the fact that the coordinate errors in
1.5- to 2-Å resolution x-ray structures are '0.2–0.3 Å (7, 29),
these data provide empirical evidence that an accuracy of
0.4–0.8 Å in the backbone coordinates is attainable under
appropriate circumstances by using current NMR methodol-
ogy (25).

The accuracy of NMR structures will be affected by errors
in the interproton distance restraints. These errors can arise
from two sources: (i) misassignments and (i) errors in distance
estimates. Errors due to misassignments may be quite common
in low resolution NMR structures. Fortunately, in many cases,
these errors are of relatively minor consequence and do not
result in the generation of an incorrect fold. Systematic errors
in distance estimates may be introduced in attempts to obtain
precise distance restraints. For example, interactive relaxation
matrix analysis of the NOE intensities (30) and direct refine-
ment against the NOE intensities (31, 32), while accounting for
spin diffusion, can result in systematic errors from several
sources such as: the presence of internal motions (not only on
the picosecond time scale but also on the nanosecond to
millisecond time scales); insufficient time for complete relax-
ation back to equilibrium to occur between successive scans;
and differential efficiency of magnetization transfer between
protons and their attached heteronucleus in multidimensional
heteronuclear NOE experiments (26). For these reasons, it is
probably prudent at the present time, at least in cases dealing
with proteins, to convert the NOE intensities into loose
approximate interproton distance restraints (e.g., 1–8-2.7 Å,
1.8–3.3 Å, 1.8–5.0 Å, and, if appropriate, 1.8–6.0 Å for strong,
medium, weak, and very weak NOEs, respectively) with the
lower bounds given by the sum of the van der Waals radii of
two protons. These distance ranges are sufficiently generous to
take into account untoward effects in the conversion of NOE
intensities into distances (2, 3, 19, 26). Using this approach,
systematic errors in the interproton distance restraints gener-
ally will be introduced only at the boundary of two distance
ranges.

In the case of experimental structures calculated with an
incomplete set of NOE restraints (i.e., comprising ,90% of the
structurally useful NOEs), there is no doubt that errors, arising
both from misassignments as well as from the incorrect
classification of NOEs into the various loose approximate
distance ranges, will occur, resulting in less accurate structures.
This loss in accuracy is due to the fact that, until a significant
degree of redundancy is present in the NOE restraints, such
errors often can be accommodated readily without unduly
comprising the agreement with either the experimental NMR
restraints or the restraints for covalent geometry and non-
bonded contacts. However, once 90% of the structurally useful
NOEs have been assigned and incorporated into the restraints
set, corresponding typically to an average of 15 restraints per
residue with .60% of the NOEs involving unique proton pairs,
two sensitive and complementary techniques can be employed
easily to identify and correct such errors.

The first method involves an analysis of the distribution of
restraints violations in the ensemble of calculated structures. If
a given restraint is systematically violated in more than, for
example, 20% of the calculated structures, even by as little as
0.1 Å, it is highly likely that it should either be reclassified into
the next looser category (i.e., strong to medium, medium to
weak) or that errors in NOE assignments are present (26).

FIG. 1. Correlation between backbone precision of NMR struc-
tures and their agreement with x-ray structures. Where the backbone
rms difference between the average NMR coordinates (NMR) and the
corresponding x-ray structures is available, the values are represented
as circles. When only the average backbone rms difference between an
ensemble of NMR structures (,NMR.) and the corresponding x-ray
structure is quoted in the literature, squares are used. The straight line
represents a linear fit to the data with a slope of 0.70, an intercept of
0.45 Å, and a correlation coefficient of 0.9. The structures are as
follows: p53(mon), p53(dim), and p53(tet) are the monomer, dimer,
and tetramer, respectively, of the p53 oligomerization domain (51);
IL-8, interleukin-8 monomer (52); Hir (new), highly refined structure
of hirudin (53); IL-1, interleukin-1b (6, 7); BPTI, bovine pancreatic
trypsin inhibitor (54); eglin c (55); PC, French bean plastocyanin (56);
tendamistat (57); Hir(old), hirudin (58); Cyp-CsA, cyclophilin–
cyclosporin A complex (59); Mb, carbonmonoxy myoglobin (helices
plus heme; ref. 60); CPI, potato carboxypeptidase inhibitor (61);
PCP-B, procarboxypeptidase B (62); and BSPI, barley serine protein-
ase inhibitor 2 (63). The values given exclude conformationally
disordered regions as described in the papers cited. Note that the NMR
structures of IL-8 and Hir(old) were obtained before the correspond-
ing x-ray structures and that the NMR structure of tendamistat was
obtained independently of and at the same time as the x-ray structure.
Reproduced from ref. 25.
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The second approach uses complete cross-validation to
assess the completeness of the experimental restraints and the
degree to which each distance restraint can be predicted by the
remaining ones (33). Typically, this approach involves calcu-
lating a series of simulated annealing structures in which the
restraints are partitioned randomly into a test set comprising
'10% of the data and a reference set. Only the reference set
is incorporated into the target function, and each calculation
is carried out with a different test and reference set pair,
thereby permitting one to fully explore the constraining power
of the NOE restraints. The average agreement with all of the
test sets as well as the atomic rms shift after complete
cross-validation then provides an indicator of accuracy.

Finally, a further check on the correctness of the structures
is provided by verifying that all short interproton distances
(e.g., ,3.5 Å) predicted by the structures are in fact observed
in the NOE spectra (25). Indeed, this procedure forms the
basis of the iterative refinement process; the structures at each
successive stage of refinement are used to predict all short
interproton distance contacts, which then are searched for in
the NOE spectra. In general, the vast majority of interproton
distances ,3.5 Å, and certainly all of those ,2.5 Å, should be
observed. Exceptions can occur occasionally if the linewidths
of the corresponding resonances are broadened severely be-
cause of some sort of intermediate chemical exchange process
on the chemical shift scale (caused, for example, by multiple
conformations or microheterogeneity) resulting in severe at-
tenuation of the NOE cross peaks.

Additional Experimental NMR Restraints that Define
Short Range Order. Although the interproton distance re-
straints derived from NOEs provide the mainstay of NMR
structure determination, direct refinement against other ex-
perimental NMR restraints is both feasible and desirable. In
this section, we consider experimental restraints that provide
short range structural information, specifically three-bond
coupling constants (10), secondary 13C chemical shifts (11),
and 1H chemical shifts (12, 13).

Three-Bond Coupling Constants. Three-bond coupling con-
stants are related to torsion angles by the Karplus (34)
equation: 3J(l) 5 Acos2(l) 1 Bcos(l) 1 C, where l is the
torsion angle corresponding to the three-bond coupling, and
A, B, and C are constants obtained by nonlinear optimization
to yield the best fit between experimental 3J values and values
calculated from a series of very high resolution x-ray structures.
The coupling constants can be converted directly into loose
torsion angle restraints (19). Alternatively, direct refinement
against coupling constants can be achieved by adding the
potential EJ 5 kJ (Jobs 2 Jcalc)2 (where kJ is a force constant
and Jobs and Jcalc are the observed and calculated values of the
coupling constants) (10).

From the standpoint of refinement, the most useful coupling
constant, in so far that it can be measured accurately and easily
by quantitative J correlation spectroscopy and that its Karplus
relationship has been parametrized reliably, is the 3JHNa

coupling, which is related directly to the f backbone torsion
angle (35). The Karplus curve for 3JHNa, however, is symmetric
about f 5 2120°, such that one cannot distinguish f 5 2120°
1 a from f 5 2120° 2 a from the 3JHNa coupling alone (36).
Where appropriate, this degeneracy can be resolved by quan-
titative J-correlation measurement of the 3JCOCO coupling,
which has its steepest f dependence close to f 5 2120° (36).

It is also worth noting that the relationship between the
three-bond amide deuterium isotope shift experienced by 13Ca
resonances, 3DCa(ND), is related to the backbone c angle by
a Karplus type relationship of the form 3DCa(ND) 5 30.1 1
22.2 cos (c 2 90°) ppb (37) and hence can be incorporated into
structure refinement in exactly the same manner as three-bond
coupling constants.

Secondary 13C Chemical Shifts. There is a clear empirical
correlation between the protein backbone conformation, de-

fined in terms of the f and c torsion angles, and the 13Ca and
13Cb secondary chemical shifts (that is, the difference between
observed shifts and random coil shifts) (38, 39). In addition, ab
initio quantum mechanical calculations have indicated that the
f,c angles dominate shielding for Ca and Cb atoms (40).
Because the secondary 13Ca and 13Cb shifts provide informa-
tion on c as well as f and because they are readily measured,
it is clearly useful to incorporate them directly into the
refinement algorithm.

The strategy that we used makes use of an empirical surface
describing the expected Ca and Cb secondary chemical shifts
as a function of the backbone torsion angles f and c, derived
from the structurally ordered regions of a set of four proteins
whose 13C chemical shifts were known and for which high
resolution crystal structures are available (38). The expecta-
tion surface is given by Ca

expected (f, c) 5 {SCa
k (fk, ck) exp

[2((f 2 fk)2 1 (c 2 ck)2)yS]y{S exp [2((f 2 fk)2 1 (c 2
ck)2)yS]}, and similarly for Cb

expected (where S is a Gaussian
scale factor given by r2ye0.5 where r is the radius of the
Gaussian; in this case r 5 17.7° and S 5 450). The average rms
difference between the observed chemical shift values and the
empirical surface is '1.1 ppm. Direct refinement against the
13Ca and 13Cb shifts is carried out by adding the potential
ECshift (f,c) 5 kCshift [DCa (f,c))2 1 (DCb (f,c))2], where
DCn(f,c) 5 Cn

expected (f,c) 2 Cn
observed n 5 a or b) and kCshift

is a force constant (with a value chosen to yield an rms
difference between observed and calculated shifts of '1 ppm)
(11).

To use simulated annealing to improve the agreement of the
observed and expected carbon chemical shifts, the partial
derivatives of the energy along f and c (i.e., the forces along
f and c) also must be calculated. These are given by dECshifty
df(f,c) 5 2kCshift{[(DCa(f,c))zdCa

expectedydf] 1 [DCb(f,c))
zdCb

expectedydf]} and dECshiftydc(f,c) 5 2kCshift{[(DCa(f,c))
zdCa

expectedydc] 1 [(DCb(f,c))zdCb
expectedydc]}. Because

there is no explicit function fitted to the expectation values, the
partial derivatives of Ca

expected and Cb
expected with respect to f

and c are approximated by the local slopes of the expectation
value grid about the grid point (f, c) at which the energy is
evaluated.

Although the information contained in the secondary 13Ca
and 13Cb chemical shifts is to some extent redundant with that
offered by 3JHNa coupling constants, the two experimental
measures are complementary (11). Thus, the values of the
3JHNa coupling constants depend only on f, whereas the 13Ca

and 13Cb chemical shifts depend on both f and c. Moreover,
3JHNa coupling constants may not be measurable for all
residues because of small values of the couplings, line broad-
ening, or chemical shift overlap of the backbone nitrogen
atoms. In contrast, 13Ca and 13Cb shifts are obtained readily for
almost all residues.

1H Chemical Shifts. Proton chemical shifts are influenced by
short range ring current effects from aromatic groups, mag-
netic anisotropy of C5O and C-N bonds, and electric field
effects arising from charged groups. Recent developments in
empirical models for 1H chemical shift calculations have shown
that it is now possible to predict 1H chemical shifts for
nonexchangeable protons to within 0.23–0.25 ppm for proteins
for which high resolution crystal structures are available (41,
42).

The calculated 1H chemical shift scalc can be decomposed
into four terms: the ‘‘random coil’’ (srandom), ‘‘ring current’’
(sring), ‘‘magnetic anisotropy’’ (sani), and ‘‘electric field’’ (sE)
shifts (41). sring depends on the distance and orientation of the
aromatic ring to the proton of interest. sani represents the sum
of the anisotropies arising from the C5O and C-N bonds of the
backbone and the side chain functional groups of Asp, Glu,
Asn, and Gln and depends on distance (r23) and orientation
of the proton from these functional groups. Finally, sE de-
pends on the distance (r22) between the charged heavy atom
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and the proton, the angle between the charged heavy atom-
proton and C-proton vectors, and the charge on the heavy
atom.

Direct refinement against 1H chemical shifts is carried out
by adding a 1H chemical shift term, Eprot 5 S kprot (scalc,i 2
sobs,i)2, where kprot is the force constant and sobs,i and scalc,i are
the observed and calculated 1H chemical shifts, respectively, of
proton i (12). For nonstereospecifically assigned methylene
and methyl groups, a modification of Eprot is required to make
maximal use of the shift information (13). Specifically, this
involves making use of a set of potentials that involve the sums
and differences of the chemical shifts to automatically handle
chemical shifts involving prochiral centers without the need for
making a priori stereospecific assignments (13).

Results of Refinement Against Three-Bond Coupling Con-
stants and 13C and 1H Shifts. Provided there are no severe
errors in the interproton distance restraints, refinement
against 3JHNa coupling constants, 13C shifts, and 1H shifts
reduces the rms difference between calculated and observed
values to approximately the level of the expected errors
('0.5–1 Hz, '1 ppm, and '0.2–0.3 ppm, respectively) without
significantly impairing the agreement with the other restraints
in the target function (i.e., experimental interproton distance
and torsion angle restraints, covalent geometry, and non-
bonded contacts) (10–13). In addition, provided the quality of
the initial structures is high, refinement results in only small
overall atomic rms shifts with no increase in precision at the
expense of accuracy.

We have found 13C shifts particularly useful in regions that
are ordered but possess no regular secondary structure. Ex-
amples that come to mind are the N-terminal tail of the
transcription factor GAGA (43) and the transcriptional co-
activator HMG-IyY (44) bound to the minor groove of DNA.
In such cases, the secondary 13C shifts permit one to exclude
easily certain backbone conformations.

Whereas coupling constants and 13C shifts are related
directly to specific torsion angles, 1H shifts are influenced by
close spatial proximity of various functional groups and are
particularly useful in the presence of aromatic groups. Indeed,
1H shift refinement was critical in establishing the correct
dimer interface in the structure of the C-terminal DNA
binding domain of HIV-1 integrase (45). Another example is
provided by Fig. 2, which illustrates the effect of 1H shift
refinement, arising from the presence of a trypophan residue,
on the active site of reduced human thioredoxin (12).

Additional NMR Restraints that Define Long Range Order.
Until recently, NMR structure determination has relied ex-
clusively on restraints whose information is entirely local and
restricted to atoms close in space, specifically NOE-derived
short (,5 Å) interproton distance restraints, which may be

supplemented by coupling constants, 13C secondary shifts, and
1H shifts as described above. The success of these methods is
mainly due to the fact that short interproton distances between
units far apart in a linear array are conformationally highly
restrictive. However, there are numerous cases in which re-
straints that define long range order can supply invaluable
structural information (16, 17). In particular, they permit the
relative positioning of structural elements that do not have
many short interproton distance contacts between them. Ex-
amples of such systems include modular and multidomain
proteins and linear nucleic acids. Two approaches recently
have been introduced that directly provide restraints that
characterize long range order a priori. The first relies on the
dependence of heteronuclear (15N or 13C) longitudinal (T1)
and transverse (T2) relaxation times, specifically T1yT2 ratios,
on rotational diffusion anisotropy (16), and the second relies
on residual dipolar couplings in oriented macromolecules (17,
18). The two methods provide restraints that are related in a
simple geometric manner to the orientation of one-bond
internuclear vectors (e.g., N-H and C-H) relative to an external
tensor. In the case of the T1yT2 ratios, the tensor is the
diffusion tensor (16). In the case of residual dipolar couplings,
the tensor may be the magnetic susceptibility tensor for
molecules aligned in a magnetic field (17), the molecular
alignment tensor for molecules aligned by anisotropic media
such as liquid crystals (46), the electric field tensor for
molecules aligned by an electric field, or the optical absorption
tensor for molecules aligned by polarized light.

Refinement Against T1yT2 Ratios. Heteronuclear relaxation
has been used for a long time to provide information on
internal dynamics. The 15N transverse relaxation time T2 is a
function of frequency-dependent and -independent spectral
density terms, whereas the 15N longitudinal relaxation time T1
is only a function of the frequency-dependent terms. For
axially symmetric rotational diffusion (i.e., Dzz Þ Dxx 5 Dyy
where Dzz, Dxx, and Dyy are the diagonal elements of the
diffusion tensor) characterized by diffusion tensor constants
parallel (D\ 5 Dzz) and perpendicular (D' 5 [Dxx 1 Dyy]y2)
to the unique axis of the diffusion tensor, the spectral density
J(v), in the limit of very fast, axially symmetric internal
motions, is given by J(v) 5 S2Sk51,2,3Ak[tky(1 1 v2tk

2)], where
v is the angular resonance frequency, and S is the generalized
order parameter for rapid internal motion; t1, t2, and t3 are
time constants given by (6D')21, (D 1 5D')21, and (4D 1
2D')21; and the terms A1, A2, and A3 are given by (1.5cos2u
2 0.5)2, 3sin2ucos2u, and 0.75sin4u, where u is the angle
between the time-averaged N-H bond vector orientation in the
molecular frame and the unique axis of the diffusion tensor
(47). In the absence of large amplitude internal motions and
conformational exchange line broadening, the 15N T1yT2 ratio
for a protein with an axially symmetric diffusion tensor de-
pends only on three variables: the angle u (arising from the Ak
terms) and the diffusion tensor constants D\ and D'. As
described below, D\ and D' are extracted readily from the
ensemble of 15N T1 and T2 relaxation times.

Thus, the individual T1yT2 ratios provide a direct measure
of the angle u between the N-H bond vector and the unique
axis of the diffusion tensor. This orientation is not known a
priori, so we allowed it to float by making use of an external,
initially arbitrarily positioned axis, defined by a single C-C
bond, positioned 50 Å away from the structure (16). The
geometric content of the T1yT2 ratios is incorporated into
simulated annealing refinement by adding the potential term
Eanis 5 kanis[(T1yT2)calc 2 (T1yT2)obs]2, where kanis is a force
constant and (T1yT2)obs and (T1yT2)calc are the observed and
calculated values of T1yT2, respectively. At each step of the
simulated annealing protocol, Eanis is evaluated by calculating
the angle between the N-H vectors and the unique axis of the
diffusion tensor, defined by the floating C-C bond vector. The
desired target value between observed and calculated T1yT2

FIG. 2. View of the active site and neighboring regions of reduced
human thioredoxin showing a superposition of 40 simulated annealing
structure before (blue) and after (red) 1H chemical shift refinement.
Reproduced from ref. 12.
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ratios, based on the experimental uncertainty in the measured
T1yT2 values, is achieved by empirically adjusting the value of
kanis.

To apply T1yT2 refinement, the values of D\ and D' must be
determined directly from the ensemble of measured T1yT2
ratios without reference to a known structure. For a uniform
distribution of N-H bond vectors in space, the probability of
finding an N-H vector that makes an angle u with the unique
axis of the diffusion tensor is proportional to sinu (16). Hence,
u values near 90° are statistically most probable. These are the
amides that yield the lowest T1yT2 ratios. The probability of
finding an N-H bond vector with u ' 0° is low, and, conse-
quently, the T1yT2 ratio for u 5 0° is not extracted as easily
from the range of experimentally observed T1yT2 ratios.
Experimentally, (T1yT2)min and an initial estimate of (T1y
T2)max are obtained by taking the average of the lowest and
highest T1yT2 ratios, respectively, such that the SDs in their
estimates are equal to the measurement error. Initial estimates
for D\ and D' then are obtained by simultaneously best-fitting
the complete equations describing (T1yT2)min, (T1yT2)max, and
the ratio of these two terms. Because the initial estimate of
(T1yT2)max is likely to underestimate the true value of (T1y
T2)max, for the reasons discussed above, the estimated value of
(T1yT2)max is increased in a stepwise manner (in increments of
5% up to a 35% increase) yielding new values of D\ and D'.
For each set of values, an ensemble of simulated annealing
structures is calculated, and the dependence of the rms
difference between observed and calculated T1yT2 values,
D(T1yT2), on the estimated value of (T1yT2)max is examined.
The minimum of this function yields the best estimates for D\

and D'. The minimum is relatively shallow, and the structure
is not significantly affected by using D\ and D' values that
change (T1yT2)max by up to 615% but keep (T1yT2)min con-
stant.

The general, fully asymmetric case, in which Dxx Þ Dyy, is
treated in an analogous manner (16). The 15N T1yT2 ratio then
depends not only on the angle u between the z axis of the
diffusion tensor and the N-H vector orientation but also on the
angle f that describes the position of the projection of the N-H
vector on the x-y plane, relative to the x axis. The rhombicity
factor h is defined as 3y2(Dyy 2 Dxx)y[Dzz 2 0.5(Dyy 1 Dxx)].
In practice, for most proteins with large diffusion anisotropy,
[2Dzzy(Dxx 1 Dyy) $ '1.5], h is found to be smaller than 0.4.
Even at the high end of this range (h 5 0.4), the dependence
of the T1yT2 ratio on f is relatively weak (introducing changes
in the predicted T1yT2 ratio that are of a magnitude compa-
rable to the uncertainty in the measurements). Although the
effect of rhombicity of the diffusion tensor on the T1yT2 ratio
is relatively small, including its effect in the structure refine-
ment, procedure does not pose any fundamental problem. In
this case, the floating diatomic molecule, used above to
describe the orientation of the diffusion tensor in the structure
calculations for the axially symmetric case, is replaced by an
artificial tetraatomic molecule comprising atoms X, Y, Z, and
O, with three mutually perpendicular bonds, X-O, Y-O, and
Z-O corresponding to the x, y, and z axes of the diffusion
tensor, respectively. Calculation of Eanis is completely analo-
gous to the axially symmetric case but uses the full, five-term
expression for the spectral density. A set of structure calcu-
lations, carried out for a small number of h values (typically 0,
0.2, and 0.4) then indicates whether inclusion of rhombicity
leads to better agreement with the experimental T1yT2 data.
As pointed out above, however, the T1yT2 ratio is only a weak
function of h, and the exact value of h often is defined poorly
by the NMR data.

For the heteronuclear 15N T1yT2 method to be applicable,
the molecule must tumble anisotropically (i.e., it must be
nonspherical). The minimum ratio of the diffusion anisotropy
(D yD') for which heteronuclear T1yT2 refinement will be
useful depends entirely on the accuracy and uncertainties in

the measured T1yT2 ratios. In practice, the difference between
the maximum and minimum observed T1yT2 ratio must exceed
the uncertainty in the measured T1yT2 values by an order of
magnitude. This typically means that D yD' should be greater
than '1.5 (16).

Direct refinement against 15N T1yT2 ratios has been applied
to the N-terminal domain of enzyme I (EIN), a 30-kDa protein
of 259 residues (16). EIN is elongated in shape with a diffusion
anisotropy of '2. As a result, the observed T1yT2 ratios range
from '14 when the N-H vector is perpendicular to the
diffusion axis to '30 when the N-H vector is parallel to the
diffusion axis. EIN consists of two domains, and of the 2,818
NOEs used to determine its structure, only 38 involve inter-
domain contacts (8). Refinement against the T1yT2 ratios
resulted in a small change in the relative orientations of the two
domains without perturbing the structures of the individual
domains.

Refinement Against Residual Dipolar Couplings. The ex-
pression for the residual dipolar coupling d(u,f) between two
directly bonded nuclei can be simplified to the form d(u,f) 5
Da(3cos2u 2 1) 1 3y2 Dr(sin2u cos2f)], where Da and Dr are
the axial and rhombic components of the traceless diagonal
tensor D given by 1y3 [D22 2 (Dxx1 Dyy)y2] and 1y3 (Dxx 2
Dyy), respectively, with Dzz . Dyy $ Dxx ; u is the angle
between the interatomic vector and the z axis of the tensor; and
f is the angle that describes the position of the projection of
the interatomic vector on the x-y plane, relative to the x axis
(48). Note that the terms Da and Dr subsume various constants
including the gyromagnetic ratios of the two nuclei, the
distance between the two nuclei, the generalized order pa-
rameter S for internal motion of the internuclear vector, the
magnetic field strength, and the medium permeability. [It is
worth pointing out that, because Da and Dr scale with S and not
S2, the assumption of a uniform S value introduces a negligible
error of at most a few percent in the dipolar coupling providing
S2 $ 0.6, particularly when one considers that S2 values in
structured regions of a protein typically fall in the 0.85 6 0.05
range (17)].

The applicability of the residual dipolar coupling method
depends on the magnitude of the degree of alignment of the
molecule in the magnetic field (17). The magnetic suscepti-
bility of most diamagnetic proteins is dominated by aromatic
residues but also contains contributions from the susceptibility
anisotropies of the peptide bonds. The magnetic susceptibility
anisotropy tensors of these individual contributors are gener-
ally not colinear, so the net value of the magnetic susceptibility
anisotropy in diamagnetic proteins is usually small. Much
larger magnetic susceptibility anisotropies are obtained if
many aromatic groups are stacked on each other in such a way
that their magnetic susceptibility contributions are additive, as
in the case of nucleic acids. Hence, alignment induced by the
magnetic field is suited ideally to nucleic acids and protein–
nucleic acid complexes (17). In practice, the residual dipolar
couplings must exceed the uncertainty in their measured values
by an order of magnitude, which typically means that the
magnetic susceptibility anisotropy should be '210 3 10234 m3

per molecule, which is '10 times greater than that for benzene.
This translates into values of Da obtained by measuring the
difference in one-bond coupling constants at, for example, 360
and 750 MHz of '0.5 Hz for N-H vectors and '0.9 Hz for C-H
vectors. To obtain these values with sufficient accuracy re-
quires that the one-bond couplings be measured by constant-
time J-modulated correlation spectroscopy (49). More re-
cently, it has been shown that high degrees of alignment in a
magnetic field, corresponding to values of Da of '10 Hz for
N-H vectors and 18 Hz for C-H vectors, can be achieved readily
by the addition of dilute liquid crystalline media, while retain-
ing the sensitivity and resolution of spectra recorded in
isotropic media (46). As a result, it becomes feasible to
measure several different types of residual dipolar couplings by
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simply examining the splittings in 2D or 3D coupled correla-
tion spectra. In particular, the much smaller residual couplings
for other types of internuclear vectors, such as C9-N (10 times
smaller than N-H) and Ca-C9 and C-C ('6 times smaller than
N-H), are experimentally accessible.

The geometric content of the residual dipolar couplings is
incorporated into the simulated annealing protocol by includ-
ing the term Edipolar 5 kdipolar(dcalc 2 dobs)2, where kdipolar is a
force constant and dcalc and dobs are the observed and calcu-
lated values of the residual dipolar couplings, respectively (17).
Just as for Eanis in the case of T1yT2 refinement, Edipolar is
evaluated by calculating the u and f angles between the
appropriate bond vectors (e.g., N-H, Ca-H, or Ca-C9) and an
external arbitrary axis system, defined by an artificial tetra-
atomic molecule comprising atoms X, Y, Z, and O, with three
mutually perpendicular bonds, X-O, Y-O, and Z-O, represent-
ing the x, y, and z axes of the tensor, respectively (17, 18).

To apply residual dipolar coupling refinement, the values of
Da and the rhombicity R (defined as DryDa) must be deter-
mined directly from the experimental data (18). The minimum
value of the residual dipolar coupling, dmin, occurs at u 5 f 5
90°, such that Da is given by -dminy(1 1 1.5R). Experimentally,
a reliable value of dmin is obtained by taking the average of the
smallest residual dipolar couplings such that the SD of the
estimated dmin value is equal to the measurement error. The
maximum value of the residual dipolar coupling, dmax, which
occurs at u 5 0°, is given by 2Da. As in the case of the T1yT2
ratios discussed above (16), a reliable estimate of dmax is more
difficult to obtain from the experimental data because the
probability of finding a bond vector with u ' 0° is low.
Consequently, if measurements are available for only a single
type of internuclear vector, the value of dmax, and hence the
value of Da generally will be underestimated by 15–20%.
Nevertheless, the observed value of dmax still can be used to
obtain an upper limit for the value of R given by [22dmin(obs)y
dmax(obs) 2 1]y1.5 (18).

Because dmin can be determined accurately experimentally
(for R , 0.6) but Da cannot be obtained independently of R
(unless a good estimate of dmax is available), the strategy we use
when residual dipolar couplings only have been measured for
a single type of internuclear vector involves calculating a series
of structure ensembles for different estimates of R. (Note that
the rhombicity reaches a maximum value of 2y3 when Dzz 5
2Dxx and Dyy 5 0; at this point the z and x axes are
interchangeable so that the probability of finding a N-H vector
perpendicular to the z axis is the same as finding one parallel
to the z axis). The dependence of the rms difference between
target and calculated dipolar couplings on the estimated value
of R (Rest) shows a minimum when Rest is approximately equal
to the target value of R (Rtarget) (18). The same type of
dependence is observed for the total energy of the target
function, reflecting not only the agreement between target and
calculated dipolar couplings but also small changes in the
agreement between target and calculated values of the other
terms in the target function (18).

Because the distribution of the different vector types relative
to the tensor is not identical, it becomes possible, once
measurements are available for two or more types of internu-
clear vectors, to obtain reliable values of Da and R from the
observed minimum (dmin), maximum (dmax), and most proba-
ble (dp) values of the normalized residual dipolar couplings.
The residual dipolar couplings for different internuclear vec-
tors are normalized readily because Da,CD 5 Da,AB(gCgDy
gAgB)(rAB

3yrCD
3), where AB and CD are two types of inter-

nuclear vector (e.g., N-H and Ca-H); gA, gB gC, and gD the
gyromagnetic ratios of atoms A, B, C, and D, respectively; and
rAB and rCD the internuclear A-B and C-D distances. A
histogram of the normalized residual dipolar couplings dis-
plays a powder spectrum with the property that dmin 1 dmax 1
dp 5 0. The values of Da and R then can be obtained readily

by least squares minimization of the following three equations:
dmin(obs) 5 2Da(1 1 1.5R), dmax(obs) 5 2Da, and dp(obs) 5
2Da(1 2 1.5R). Indeed, model calculations with four different
proteins of differing sizes and secondary structure content
indicate that, if the N-H, Ca-H, and Ca-C9 residual dipolar
couplings are measured for only 50% of the residues, Da and
R can be determined in this manner to within better than 5%
and 60.1, respectively, which is quite sufficient because vari-
ations in the estimated value of Da and R of 610% and 60.15
have a negligible effect on the calculated structures (18). If
only residual dipolar couplings are measured for the NH and
Ca-H vectors, Da and R still can be determined to within an
accuracy of better than 10% and 60.15.

An example of the structural impact of residual dipolar
coupling refinement is illustrated in Fig. 3 for the case of a
complex of the transcription factor GATA-1 with a 16-bp
oligonucleotide (17). In this instance, the addition of only 90
dipolar coupling restraints to the '1,500 NOE and '300
torsion angle restraints resulted in a substantial improvement
in the quality of the protein backbone, as judged by an
approximately twofold reduction in the number of residues
lying outside the most favored region of the Ramachadran f,c
plot (17). With the exception of a single region, the ensembles
of structures calculated with and without dipolar couplings
overlap (Fig. 3). There is, however, a substantial displacement
(accompanied by a maximal '4-Å rms shift in the backbone
coordinates of residue 22) in the short loop (residues 21–24)
that connects strands b3 and b4. Because this loop has low
mobility, as judged from 15N relaxation data, this is a good
example illustrating one of the principal shortcomings of NMR
structure determination based on NOE measurements, namely
an ill-defined region due to lack of long range NOE restraints.
The only NOEs observed for residues 22 and 23 are either
intraresidue or sequential, and there are no long range NOEs
involving residues 21 through 24. Hence, the precision of the
backbone coordinates for this loop is lower than that for the
a-helix and b-strands. Even though there are loose torsion
angle restraints for the f and c angles of these residues,
accumulation of errors in the experimental restraints (for
example, an NOE interproton distance restraint that is slightly
too short, even by as little as 0.1 Å) becomes an important

FIG. 3. View showing bestfit superpositions of the restrained
regularized mean coordinates obtained with and without dipolar
coupling restraints. The protein is shown as a ribbon diagram drawn
through the Ca positions. The loop between strands b3 and b4
(residues 21–24) is shown in magenta for the structure obtained with
dipolar coupling restraints and in grey for the structure obtained
without dipolar coupling restraints. Adapted from ref. 17.
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factor in determining the orientation of this loop with respect
to the rest of the protein.

Refinement with a Conformational Database Potential. In
the context of simulated annealing refinement, it is found
generally that conventional nonbonded interaction terms (ei-
ther attractive–repulsive or purely repulsive) have very poor
discriminatory power between high and low probability local
conformations (14). This can be circumvented by the use of a
conformational database potential derived from high resolu-
tion, highly refined protein and nucleic acid crystal structures
that bias the sampling during simulated annealing refinement
to conformations that are energetically possible by limiting the
choices of dihedral angles to those that are known to be
physically realizable (14, 15).

The database potential, which is partitioned into various
one, two, three, and four dimensional distributions (Table 1),
is created as follows (14). For each distribution, the fractional
probability Pi for a residue to appear within a particular bin
(with each dimension digitized in increments of 8–10°) is
converted into a potential of mean force EDB(i) 5 2kDB(lnPi),
where kDB is a scale factor. Because the conformational
database energy is not a continuous function but rather is
known in discrete blocks, the partial derivatives are approxi-
mated in a manner analogous to that used for 13C chemical
shift potential term (11). To this end, the energy for every
rotatable bond (or set of rotatable bonds) being refined against
the conformational database potential is defined by looking up
the value in the grid bin that encompasses the current dihedral
angle(s), and the partial derivatives of the energy with respect
to the rotatable bond angles then are approximated by the
local slope of the energy function, defined by EDB(fi)yf '
2kDB[EDB(fi21) 2 EDB(fi11)]y2, where EDB (fi) is the data-
base energy of bin i along the rotatable bond fi and EDB(fi-1)
and EDB(fi11) are the database energies of the bins that
precede and follow the bin that contains the actual energy
value.

It should be noted that there is one significant difference
between the protein and nucleic acids conformational data-
base potentials (15). In the case of the protein conformational
database potential, the energy values for the various minima in
the multidimensional potential energy surfaces provide a true
reflection of the probability of occurrence of particular con-
formations because protein structures in solution and the
crystal state are essentially the same. In the case of nucleic
acids, however, and in particular DNA, the frequency of
occurrence of different forms in the crystal state does not
necessarily reflect their probability of occurrence in solution.
For example, in solution under physiological conditions, short
DNA oligonucleotides are invariably B-form. In the crystal,
however, A, B, or Z-forms can occur depending on the
crystallization conditions. As a result, the A and Z forms of
DNA are overrepresented in the database, and the energy
values for the different minima in the multidimensional po-
tential energy surfaces comprising the nucleic acid conforma-
tional database potential do not necessarily reflect their prob-
ability of occurrence in solution. This does not, however, affect
the positions of the various minima so that, as far as structure
refinement is concerned, the nucleic acid conformational
database potential still serves its primary function, namely
biasing sampling to conformations that are realizable physi-
cally.

The effect of incorporating the conformational database
potential into refinement is to improve the stereochemistry of
the structures in terms of the quality of the Ramachadran plot,
the rotamer distributions, and the number of bad contacts (14,
15). If there are no significant errors in the experimental
restraints, conformational database refinement will not impact
the agreement between the calculated and target experimen-
tal, covalent, and van der Waals restraints. The presence of
errors in the experimental restraints, however, will be reflected
by a large deterioration in the agreement between calculated
and target restraints upon conformational database refine-
ment (14). Hence, incorporation of the conformational data-
base provides a good indicator of the quality of both the model
and the experimental restraints (14).

Some may regard the introduction of a conformational
database energy term as a major step toward empiricism in
NMR structure refinement, adding a term with apparently no
direct physical counterpart, whose effect will be to make the
dihedral angle distributions in NMR refined structures look
more like those in crystal structures. However, the combined
quality and quantity of high (#2 Å) resolution protein struc-
tures in the crystallographic databases (50) argues strongly
against such a viewpoint and makes it very difficult to ignore
the available experimental observations relating to dihedral
angles in proteins. First, it is invariably the case that high
resolution x-ray structures show significantly better agreement
with solution observables, such as coupling constants, 13C
chemical shifts, and proton chemical shifts, than the corre-
sponding NMR structures, including the very best ones (ob-
tained in the absence of direct coupling constant and chemical
shift restraints) (10–13, 27, 28, 41, 42). Hence, in most cases,
a high (#2 Å) resolution crystal structure of a soluble globular
protein will provide a better description of the structure in
solution than the corresponding NMR structure. Second, the
probability distributions for the various dihedral angles ob-
served in the crystallographic database are a direct result of
the underlying physical chemistry of the system and as such
provide a perfectly reasonable, albeit empirically derived,
measure of the relative energetics of different combinations of
dihedral angles (14). Third, the discriminating and converging
power of the conformational database potential with regard to
dihedral angles is significantly better than that of the currently
available empirical nonbonded potentials. This point is hardly
surprising because the conformational database potential acts

Table 1. Summary of database potentials

A. Proteins
One-dimensional

x4 Arg, Lys
Two-dimensional

f/c Gly, Pro, X-Pro, H-bonding*, Val/Ile, rest
x1/x2 Leu, Ile, Gln/Glu, Arg/Lys/Met, Asn, Asp, Cys(ox),

His, Trp, Phe/Tyr
x2/x3 Met, Gln, Glu, Lys, Arg

Three-dimensional
f/c/x1 Val, Ile, Phe/Tyr/Trp, Leu, X-Pro, Gln/Glu/Arg/Lys/

Met, Cys(red)/His/Asp/Asn, Ser, Thr, Cys(ox), Pro
x1/x2/x3 Gln, Glu, Arg, Lys, Met
fi/ci/fi61,2,3,4†

fi/ci/ci61,2,3,4†

Four-dimensional
fi/ci/fi61,2,3,4†

B. Nucleic acids
Two-dimensional

a/b, a,g, a/d, a/«, a/z, a/x, b/g, b/d, b/«, b/z, b/x, g/d, g/«, g/z,
g/x, d/«, d/z, d/x, «/z, «/z, «/x, z/x

Three-dimensional
a/b/g, b/g/d, g/d/«, d/«/z, d/«/x, g/d/x, a/b/z(i-1),

a/z(i-1)/«(i-1)

*Residues with a hydrogen bond donor or acceptor in the g or d
position (Ser, reduced cysteine, Asp, Asn, Ser, and Thr).

†The scale factor used for the interresidue fi/ci/fi61,2,3,4, fi/ci/
ci61,2,3,4, and fi/ci/fi61,2,3,4/ci61,2,3,4 potentials must be set to a value
'10-fold lower than that for the intraresidue potentials; otherwise,
undesirable bias in the structures may be introduced. Typically, the
final value of the scale factor for the intraresidue conformational
database potentials is set to 1.0.
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directly on rotatable bonds whereas the nonbonding potentials
do not.

A question that is invariably asked about the conformational
database potential is whether one will be able to pick up
unusual sidechain or backbone conformations. Inspection of
high resolution protein x-ray structures indicates that one
safely can assume that 90–95% of all residues have a sidechain
conformation resembling that of a common rotamer (50).
Under these conditions, residues that truly exhibit a skewed
rotamer conformation will be spotted by specific discrepancies
between the model and the experimental restraints, and in
most circumstances such violations will be accounted for by
special structural features of the model. Moreover, one should
be especially careful in believing a nonrotamer sidechain
conformation in NMR structures in the absence of extensive
NOE and coupling constant data relating to that particular
residue. Exactly the same arguments can be applied to f,c
angles located in unfavorable regions of the Ramachandran
plot, which likewise should be treated with extreme caution
unless there is extensive experimental evidence to the contrary
(50).
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(1989) J. Mol. Biol. 206, 677–687.

58. Folkers, P. J. M., Clore, G. M., Driscoll, P. C., Dodt, J., Köhler,
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